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Abstract. This paper defines a general class of problem that has been termed the inverse 
eigenvalue problem. Basically similar problems have already been studied as isolated and 
specific examples in the analysis of time eigenvalues appearing in neutron transport theory. 
In this work, however, we present a general unified method for their treatment using 

functional analytic methods. Specifically, the critical slab problem has been analysed as an 
example of such an inverse eigenvalue problem of a Fredholm integral equation using the 
theory of perturbation of a class of positive, analytic operator-valued functions in Banach 
space. Numerical calculations of the critical thickness are given. These results are 
encouraging, considering the simplicity of the method, which does not involve an explicit 
solution of the Fredholm equation. 

1. Introduction 

Formal exact treatments of steady-state neutron transport in a multiplying and non- 
multiplying finite slab has been based on the singular eigenfunction technique of Case 
(Mitsis 1963, McCormick and Mendelson 1964), or on transform methods leading to 
singular integral equations which are adjoint to those obtained in the application of 
Case’s method (Leonard and Mullikin 1964, Bowden et al 1968). In the original 
formulation of the problem based on the Case eigenfunction expansion, Mitsis (1 963) 
considered the critical slab problem and derived a set of two coupled Fredholm integral 
equations for the discrete and continuum coefficients of Case’s theory. These equations 
were then solved by iteration, that is, by expansion in Neumann series. In practice, due 
to the complexity of the equations, only a solution to zeroth and first order could be 
constructed. In neither of these approximations were the integral equations actually 
solved: the unknown function was at best approximated by the free inhomogeneous 
term of the equation. McCormick and Mendelson (1964) in studying the slab albedo 
problem followed an approach very similar to that of Mitsis, and constructed a slightly 
different iterative scheme for the solution of the coupled Fredholm equations in a 
Neumann series. Since the standard condition for the convergence of a Neumann 
series-the modulus of the eigenvalue in Kt,b = ht,b be greater than the spectral radius of 
the operator-is sufficient rather than necessary for the existence of a unique solution of 
the integral equation, the Neumann series criterion underestimates the range of validity 
of the Fredholm equations for the problem. Both Leonard and Mullikin (1964) and 
Bowden et a1 (1968) continue this approach through the construction of suitable 
Neumann series for their integral equations. In the present paper we start from the 
integral equations obtained by the application of Case’s method (Mitsis 1963, 
McCormick and Mendelson 1964) but differ from the above works in the following 

0305-4470/80/072341+ 12$01.50 @ 1980 The Institute of Physics 2341 



2342 A §engupta and K Ganguly 

important respects: (i) we do not consider the two equations for the discrete and 
continum coefficients separately, as has been done earlier, but combine them to form a 
single Fredholm equation, and (ii) analyse this equation functional analytically based on 
the theory of perturbation of linear operator in a Banach space (Kato 1966) and obtain 
good estimates of the perturbation parameter for a multiplying slab. The evaluation of 
the perturbation parameter defines an inverse eigenvalue problem in which one obtains 
the operator given an eigenvalue. We prove that the solution of the inverse eigenvalue 
problem in a steady state for a multiplying medium in slab geometry is unique. This 
gives a unique value for the perturbation parameter which, when the eigenvalue is 
unity, is the critical thickness of the slab. We therefore do not solve the integral 
equation specifically, and thus do not need the convergence criterion of the Neumann 
series. 

2. The Fredholm equations 

Consider a slab of thickness 2b with the origin of the coordinate system located at the 
centre. As in Leonard and Mullikin (1964), we consider both the critical and albedo 
problems, that is we study the one speed equation 

subject to the slab albedo boundary conditions 

and note that the critical problem is obtained by putting S(,U - h0) = 0. The solution of 
equation (1) in standard notation (Case and Zweifel 1967), is 

Use of the boundary conditions (2a)  and (2b) and application of the half-range 
orthogonality relations (Case and Zweifel 1967) gives the two coupled Fredholm 
equations: 

b, = [ v o X ( - v o ) ( e x p ( 2 z ~ / v ~ ) f e x p ~ - 2 b / v ~ ~ ~ ~ ~ ’  
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where the new coefficients b, and B,(v) are related to the original aoa and A(v) by 

b+ = b o +  f ao-) exp(b/vo), 

B+(v)  = [A(v)*A(-v)] exp(b/v). 

zo(c) is the extrapolated endpoint defined as 

zo(c) = -$vo ln[-~(-vO)/~(vO)] 

and 

C P 
Y(P) = - 2(1 -c)  x ( -p ) (v ;  - p 2 ) ’  

f(c, v) = (1 -c)g(c, v)x( -v>(v;  - v’) 
where 

g(c, v )  = [(l- cv tanh-’ v)* + (mv/2)’]-’, (7) 

and X(v) is the well-known X-function of Case’s theory and is defined by equation (25) 
below. 

At this point, we depart from the standard (Mitsis 1963, McCormick and Mendelson 
1964) and combine (3) and (4) to obtain the single non-homogeneous Fredholm 
equation for B,(v) 

1 1 

T i j o  X(-v’)exp(-2b/v’)(-+h v + v f  * ( c, v, b))B,(u’) dv’] 

in which 

For the critical problem 
(i) there are no incident neutrons, i.e. y ( p o )  = 0 

(ii) c > 1, i.e. vo is imaginary, vo = iko 
(iii) because of the symmetry of the problem 

ao+ = ao-, A ( v) = A (- v) 

which implies b- = 0, B-(v )  = 0. Call B+(v )  = B ( v ) .  Then 

v + ko tan((b + zo)/ko) 
v + k ;  

h+(c, v, b)  = - 

and equation (8) takes the form 
1 

X(-vf) exp(-2b/v’)vf 

v + ko tan[(b +zo)/ko] 1 ‘( v’fk; - - )B(v f )  Y + V ’  dv’ 
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where 

J(c,  v) = (C - l)g(c, v ) X ( - v ) ( v * +  k : ) .  

Equations (8) and (10) are particular cases of integral equations in which the integral 
operator depends on a parameter b, and we rewrite them in operator notation as 

(i) c < 1: 
1 

AB*(v) = F ( c ,  V ,  b ) +  K+(v, Y’, b)B*(v’) dv’ I, 
2 (vfv’ 

where 

K*(v, I/’, 6) = r - f ( c ,  v ) X ( - v ’ )  exp(-2b/vf)v’ -+h*(c, v, 

and F(c, v, b )  is the free term of equation (8). 

(ii) c > 1: 

C 1 

1 

h B ( v )  =lo K(v ,  v’, b)B(v’ )  dv’ 

with 

In the following sections we study these operator equations using the methods of 
functional analysis. 

3. The eigenvalue problem and its inverse 

The integral operators generated by the kernels in equations (11) and (13) define a 
family of operator-valued functions K(b )  depending on the parameter b ; hence the 
eigenvalue will also be b-dependent (Kato 1966). The variation of A with b depends on 
the nature of the eigenvalue spectrum of the operator K ( b )  for any fixed b. If K(b )  is an 
operator in a finite dimensional space, then its spectrum consists only of a finite number 
of isolated eigenvalues and in such a case the variation of the eigenvalues with a 
variation of the perturbation parameter is well established (Kato 1966). When the 
operator acts on an infinite dimensional space, like the present instance of the Banach 
space of continuous positive functionst, then the spectrum can consist of a residual and 
continuous part, beside an (isolated) point spectrum which need not be finite. In such a 
case, additional restrictions on the operator, such as compactness, eliminate the 
residual and continuous spectra. If in addition we can prove that there is only a finite 
system of (isolated) point spectra of the type we wish to investigate (real eigenvalues, for 
example) then the theory of operators in a finite dimensional space can be applied 
without further modifications. It is also to be noted that various complications can arise 
when an infinite number of eigenvalues of K(b )  are considered simultaneously (Kato 
1966). 

An eigenvalue problem in perturbation theory therefore consists in determining 
how the eigenvalues and eigenvectors change with the operator, and the case of greatest 

The justification of this restriction on B(u)  is given in 8 6. 
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interest is when the latter depends on the parameter analytically. The inverse of this 
problem in which we are interested, specifies the eigenvalue (and its variation), and 
seeks to determine the operators (i.e. b )  which produce this eigenvalue. Such problems 
occur naturally in neutron transport theory and though they have been the subject of 
study before, mainly in connection with time eigenvalues (Wing 1962, Larsen and 
Zweifel 1974, Ukai 1965, Vidav 1968), the critical eigenvalue has not been similarly 
analysed. In the present paper we adopt this approach to the study of the critical 
problem by a systematic application of the theory of perturbations of linear operators. 
It will be seen that operator perturbation theory is a natural setting for the study of such 
problems which we call the inverse eigenvalue problem. Though problems of this 
nature have been studied before (Wing 1962, Larsen and Zweifel 1974, Ukai 1965, 
Vidav 1968), consistent use of perturbation theory does not seem to have been 
attempted. Our objective will be to show that there is only one real eigenvalue function 
for the family of integral operators K(b) .  This allows us to apply perturbation theory of 
linear operators in a finite dimensional space. 

An elegant and complete mathematical theory exists for the study of such equations 
if the operator K is positive, that is provided it leaves a cone C invariant. A set C in a 
linear space is called a cone when it has the following properties: (i) if x and y E C and 
CY, p E R+, the set of positive real numbers, then a x  + py E C and (ii) if x E C and - x  E C 
then x = 0. The set of non-negative functions in various functions spaces and the set of 
vectors with non-negative components are examples of cones. Thus the criterion for 
positivity of an operator can be expressed by syaing that K is p o d v e  if for any x E @, 
K x  E C. An integral operator is positive on the cone of non-negative functions if 
K ( v ,  v r )  > 0 for all v and v r  in their domain of definition in R,. An important property 
of a cone C in a vector space is the partial order relation defined by it, i.e. if x S y, then 
y - x  E 63. If K depends on a parameter b analytically, then different b values define 
different operators in general. The variation of K with b is reflected in a variation of A 
with b. When K(b)  is holomorphic near b = bo any finite system of eigenvalues of K ( b )  
consists of branches of one or several analytic functions which have at most algebraic 
singularities near b =bo (Kato 1966). The number of eigenvalues is independent of b, 
except at a finite number of special values called the exceptional points, at which the 
number changes. Thus for example (Kato 1966) an operator K(b)  with the matrix 
representation 

has eigenvalues 

A,(b) = * ( I +  b2)”* 

which are the two branches of the analytic function (1 + b2)1’2. The exceptional points 
are those values of b for which A+(b) = A-(b) i.e. b = *i are the exceptional points. 
There may be no exceptional points in a certain domain D (for example when the ( 6 )  is 
independent of 6 )  or there may be exceptional points at which different analytic 
functions-unlike the two branches of the same analytic function as above-are equal. 
At the exceptional point, the branches of each of the analytic functions constitute a 
cycle of period equal to the number of branches of the analytic function in question. Of 
course, there can be more than one such cycle, each corresponding to the branches of 
different analytic functions at a single exceptional point. In the example considered 
above, there is one cycle of period 2 at each of the exceptional points *i. 
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Further information on the eigenvalues can be had when K(b) is an integral operator 
valued function of b. Thus let the positive kernel K(v ,  v’, b )  generate a positive 
operator K which leaves a cone of positive functions B ( v )  invariant. Then if K ( v ,  v’, b )  
be monotonic in b for all v, v’ E R,, then the spectral radius r ( b )  is also monotonic, that 
is, if K(v ,  v’, b l )>K(v ,  Y’, bz) when b l >  bz,  then r ( b l ) >  r (b2) .  Since K has been 
assumed to be positive, it must have, by the Frobenius theorem, a positive real 
eigenvalue A ( b )  = r ( b )  greater in magnitude than the modulus of all other eigenvalues. 
Thus A (b ) ,  like r ( b ) ,  is a monotonically increasing analytic function of b. If in addition it 
can be shown that there are no other real eigenvalues of K, and if the problem restricts 
itself to real eigenvalues only, then we have a well-formulated, especially simple 
instance of the general case in which the eigenvalue of K forms only one cycle of period 
1 without any exceptional points. Summarising, we can conclude that under the 
restrictions mentioned above (all of which will be shown to be valid in our case), we have 
unique monotonically increasing analytic function A (b ) ,  as the real eigenvalue of the 
family of operators K(b). 

The resolvent R(b ,  A )  of the operator K(b) defined by 

~ ( b ,  A )  = ( K ( ~ ) - A O ) - ’  

is known to be holomorphic in the variables b and A in each domain in which A is not an 
eigenvalue of K(b). Let K(b) be a family of compact operators in a Banach space 
holomorphic for b E D, and suppose A. is an eigenvalue of K(bo). Then from the above, 
we can conclude that there will, in general, be several branches of A in every region 
IA - A o [  for sufficiently small jb -bo\. Each of these branches will either cut the A = A. 
line for a definite discrete b = bi or will be identically equal to A. in 16 -bel. Thus either 
the resolvent R(b ,  Ao) will exist as a holomorphic function for every b # bi or A. is an 
eigenvalue for all b E D. Note that for a given Ao, the different singular points bi arise 
from the different branches of the one or more analytic functions referred to earlier. 
The above result, variously attributed to Gohberg (Larsen and Zweifel1974), Smulyan 
(Vidav 1968) and Atkinson (Kato 1966) is obviously an important one, as it leads to the 
determination of the unknown parameter b in an eigenvalue problem with a fixed 
known eigenvalue Ao.  This problem therefore specifies the eigenvalue and seeks to 
determine one or more values of b-and hence the specific members of the family 
K(b)-for which A. is the eigenvalue. The problem is hence the inverse of the standard 
eigenvalue problem in which one finds the eigenvalue given the operator, and will be 
termed the inverse eigenvalue problem. The inverse eigenvalue problem will have a 
unique solution, that is it will have one and only one value of b, if the eigenvalues form a 
single cycle of period 1. In the inverse problem posed by equations (8) and (lo), A. = 1, 
and we require the b for which a non-trivial solution exists. For equation (10) this must 
be unique if it is to specify the critical thickness, b,. We will show below that this is 
indeed the case. 

4. The critical slab problem 

We will first consider the case of a multiplying medium with no incident neutrons, i.e. 
equations (13) and (14), and analyse the kernel for (i) positivity in v and v’ for all b, and 
(ii) monotonicity in b for all v and v’. The operator K must also be completely 
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continuous for all b E D. Since U and U’ are both less than 1, H will be completely 
continuous in L2 if the kernel has no singularities; this is true in each of the segments 

b+zO IT IT b+zo  IT 

2 
O S -  < 2, 

k0 
<(n  +2)-,  n = 1 , 3 , .  . . . W a ,  b) n-<- 

2 ko 

Positivity of the kernel will be met if 

U + ko tan[(b +zo)/kol 1 
U + U’) 2- 

v2  + k; 
that is if 

u 2 + k i  
U ’ S  - U. 

U + ko tan[(b + zo)/kO] 

Since U E (0, l), the above will hold for all U if 

Hence K will 

of (0 , l )  with 

ko 
U ’ 2  

be positive for all b, if 0 s U < 1 and U‘ is restricted to the subset 
tan[@ + Z O ) / ~ O ~ ’  

VL(b) S U ’ S  1 

ko 
tan[(b + z0)/k01’ 

uL(b) = 

For any c > 1, equation (16) also fixes a minimum possible value: 

say, so that 
b 3 ko tan-’(ko) - zo = bL, 

U ’ S  1. 

To show that K (U, U’, b) is monotonic in b 3 bL = ko tan-l(ko) - 20, differentiate the 
kernel with respect to b. Then 

exp(-2b/u’) b +zo 

1 exp(-2b/v’) b + zo 

U’ + k i  sec’(,), 
-=-- ,K(v, U’, b)+a(u ,  U’) aK 2 
ab U 

U’, b ) - y a ( v ,  U’) v2 + k i  sec’(T) 

2k0 U’ + k2 tan(s)l 

-- 
U 

b+zo b +ZO -2b/v0 

+-- f f ( u ,  VI) e 

Now because K(u,  U’, b) is the kernel of an integral equation, the ranges of U and U’ 
must be the same, that is (uL(b), 1). When b = bL, uL(b) = 1 and therefore U = U‘ = 1. 
Then it is easy to see from (18a) that 

We now demonstrate that if aK/ab = 0 for any other b E (bL, ikon -zo), which by 
equation (15a) is the region of interest, then d2K/ab2>0. This, together with the fact 
that K(u,  U’, 6) + 00 as b+4kov - zo proves that H(b) is monotonic in bL s b <ikov - zo. 
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If aK/ab = 0 then (18a) gives 

v+kotan[(b+z0)/ko] 1 
2( v2+kz 

From (18b) a2K/ab2 is proportional to 

At  a possible point of inflection therefore, 

which is positive for v‘> vL(b). As ak/abl+b, = 0 and a2K/db21b = bL = v’ = vL = 1 = 0, 
this implies that there cannot be a turning point of K ( v, v’, b )  in bL < b < iko.ir - zo other 
than at which K ( v ,  v’, b )  is a minimum. Hence we conclude that for vL(b) s v, v ’ s  1, 
K ( v ,  v’, b )  increase monotonically with b, that is the operator K,,(b) generated by 
K ( v ,  v’, b )  with v l ( b ) s  v, v ’ s  1 increases from zero at b = bL (when vL(b) = 1) to 
infinity at b = i r k 0  - zo. Each b therefore defines a unique operator of the family K(b) 
and r (b l )  > r (b2)  for bl > b2. For the inverse eigenvalue problem to have a unique 
solution, that is for the existence of only one b, for A ( b )  = A. = 1, it is necessary and 
sufficient that there exists only one positive eigenvalue function A ( b )  of K(b). To show 
this, we use the Hopf criterion, derivable from the Hopf inequality (Hopf 1963), which 
states that if the ratio K ( v l ,  v’, b ) / K ( v ,  v’, b )  of a positive kernel is bounded and 
greater than unity for all v, v’, v 1  E R,, that is if 

then there exists one and only one non-negative solution q50 of the operator equation 
K(b)q5 = A (b)q5 corresponding to the one and only one analytic function A ( b )  = Ao(b) > 
0 for all b, i.e A = Ao, q5 = q50 is the only positive solution of the eigenvalue equation 
under consideration. As the ratio of the kernels in (19) is a function of v and v’ (for a 
fixed b) ,  we can delete a set of measure zero at which K ( v l ,  v’, b ) / K ( v ,  v’, b )  is 
discontinuous when testing for the criterion (19). This deletion of a set of measure zero 
will not affect the Riemann integrability of the kernel function and the solution of the 
integral equation will exist almost everywhere, except at the particular deleted set of 
measure zero. As an example the integral operator defined by the kernel K ( v ,  v’) = 
v + v’, 0 s v, v’ s 1 has the eigenvalues -0.077 and 1.077. The Hopf bound is finite and 
greater than unity if the points v = v’ = 0 are excluded which proves the existence of 
only one positive eigenvalue greater in modulus than any other eigenvalue. Similarly 
for the kernel El(& --x’l), x and X’E (-b, b ) ,  encountered in the time dependent one 
speed equation (Wing 1962), e(p)  is infinite when x = x ’ .  This means that there will be 
more than one positive eigenvalue of the operator in question. Actually, it is known 
(Wing 1962) that the operator has a finite point spectrum lying on p > 0. 

In the present case the ratio in (19) is 
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and as long as we are in a region where H(b) is holomorphic, i.e. in the interval given by 
equation (15), the above will be finite if the point v = 1 is excluded (because g(c,  1) = 0). 
Thus equation (19) is verified and we conclude that in each strip of analyticity there 
exists only one analytic single-valued real function A ( b )  = r (b)  and hence A ( b l )  > A  (bz )  
if b1 > b2. An elementary application of the Gohberg-Atkinson theorem? now tells us 
that the inverse eigenvalue problem has a unique solution for any chosen A ( b )  = Ao.  Our 
intention is to determine this unique solution in the interval (15a) when A. = 1, that is to 
find the critical half-thickness b,. We note that in order to formulate the problem as 
above, we had to ensure that the integral operator was positive; this led to equation 
(16). Thus we do not solve for the exact problem but for the approximate one 

Hap(b)4(v) = Aap(b)4(~) (20) 

where 

V L ( b )  sz v sz 1, 

and b = b, when Aap(b) = 1. The lower limit of integration vL(b) is not very different 
from zero; it is exactly zero only at the end point critical half thickness. Thus if the 
method of calculation does not produce too great an error in &-this will be found to be 
true-then the approximate equation (16) will describe the exact one with very little 
error. 

Since A ( b )  = r (b) ,  we use the following estimate of r ( b )  (Krasnosel’skii 1972) in 
order to evaluate A ( b ) :  

1 1 

min [ K ( v ,  v’, b )  d v ’ s  y ( b )  s max [ K ( v ,  v’, b )  dv’ (21) 
v e ( u r . 1 )  u r ( b )  uc(vL,l) v L ( b )  

and take 

r (b)  = &(rmin(b) + rmax(b)) (22) 
where 

r l  

Considering the crudity of the bounds in (21), equations (22) give a surprisingly 
accurate estimate of the largest eigenvalue of an integral operator, as the following 
examples show. 

(i) K(v ,  v’) = exp(v + v’); v, v’ E (0, 1); 8 = e > 1, and only one positive eigenvalue 
exists whose estimate is given by 

(ii) K ( v ,  v’) = v = v’; 
(iii) K ( v ,  v’) = sin(v + v’); v, Y ’ E  (0, $ T ) ;  8 is finite when v, v ’ f  0; x = 

(iv) K ( v ,  v’) = $v’(2 - v); v, v’ E ( 0 , l ) ;  8 = 2; h = 0.375, A = 0.333. Thus equation 
(22) can be used with some confidence for obtaining a fairly accurate estimate of the 

= $(e2  - 1) = A, the exact value. 
v, v’ E (0, 1); x = 1.00, A = 1.077. 

1.2071, A - 1.2854. 

t We prefer to attribute the theorem to Gohberg-Atkinson for chronological reasons. 
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largest eigenvalue, or spectral radius, of an integral operator. 

c - 
u r ( b )  2 v2+k: 

v + ko tan(@ +zo)/ko) 1 

I(v, b )  = I K ( v ,  v’, 6)  dv’ = - f ( c ,  v )  

1 

x I v’X(-v’) exp(-2b/u’) dv’ 
uL.(b) 

necessary in the estimation of A ( b ) ,  was approximated as 

C 

2 
v + ko tan[@ + z O ) / k O ]  [ 2(v2+k;) ~ ( v ,  b )  ==-exp(--2b)~(-l)T(c, v) 

Using (24), the spectral radius was calculated as follows. A 

The integral 

( b  > bL) and equation (24) evaluated at twenty-one points in the interval (vL(b), 1). The 
maximum and minimum of these twenty-one values were then obtained and the 
spectral radius was calculated according to equation (22). If this was equal to 1 within a 
specified error limit, (Ir(b)  - 11 =s lo-’) then this choice of b is the solution to the inverse 
eigenvalue problem, b,. If it was not, a new value of b was taken and the process 
repeated. This convergence in the spectral radius with respect to b was achieved by the 
method of bisection, which could be adopted because the spectral radius increases 
monotonically with b. The constants needed in the calculation, ko(c) and zo(c),  were 
taken from Casz et a1 (1953), the g(c, v )  function was calculated from its definition, 
equation (7), and X ( - v )  was obtained at the 21 points by a 21-point Simpson’s rule 
numerical quadrature in 

1 

X(-v) = exp[ -i Io g(c, v’)( 1 +“) 1 - d2 ln(v + v’) dv’] 

The values of the critical half thickness so obtained are shown in table 1. For 
comparison, the table also lists the PI and P3 results and also the vL values at b,. 

The critical thicknesses are significantly improved if instead of using equation (24), 
the integrations are performed numerically in equation (23). In this case, as in the 
above, the errors increase with c, and the maximum for c = 2.0 is 8.20°/0. These results 

Table 1. Critical half-thickness b, in units of mean free path 

C Exact Present (YO error) PI ( O h  error) P3 ( O h  error) 4 b J  

1.05 3.3002 3.3002 (0.000) 3.4034 (-3.438) 3,3065 (-0.193) 0~0000 
1.02 5,6655 5.6655 (0.000) 5.7519 (-1.5253) 5,6711 (-0.0994) 0.0000 

1.1 2.1134 2.1125 (0.043) 2.2287 (-5,454) 2.1213 (-0.376) 0.0008 
1.2 1.2893 1.2855 (0,295) 1.4125 (-9.555) 1.3020 (-0,985) 0.0043 
1.4 0.7366 0.7231 (1.833) 0.8581 (-15.54) 0.7577 (-2.860) 0.0137 
1.6 0.5120 0.4927 (3.769) , 0.6269 (-22.44) 0.3394 (-5,151) 0.0225 
1.8 0.3887 0.3634 (6.509) 0.4965 (-27.73) 0.4182 (-7.592) 0.0298 
2 .0  0.3108 0.2805 (9.749) 0,4121 (-32.59) 0.3420 (-10.05) 0.0359 
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are not reproduced here, however. The computation time is, of course, much greater 
than if equation (24) is used. 

4.1. Discussion of numerical results 

Considering the simplicity of the method adopted here and the complexity of the 
Fredholm equation (only formal Neumann series solution in their lowest orders of 
approximation have been considered before; note that we do not need such an explicit 
solution of the integral equation), the results given here can be considered as 
encouraging. The maximum error in b, for practical values of c (< 1.6) is less than 4%, 
which for a numerical integration of (23) reduces to 2.45%. The kernel has a singularity 
at the end-point half thickness bep=&ko-zo  and as the region of analyticity and 
positivity of H(b) is bL s b < bep, b, must be less than bep. This fact is not reflected in the 
PN calculations for which, as the table shows, b,> bep. 

5. The slab albedo problem 

We now consider the slab albedo problem, i.e. equations (11) and (12). Very little 
remains to be ‘analysed’. As the kernel K+(v, Y ’ ,  b )  of equation (12) is always negative 
for all v, Y ’ E  (0, 1) and all b, the homogeneous equation for B+(v) (from equation (11)) 
cannot have a solution in the cone of positive functions. As B+(v)  is a linear 
combination of A ( v )  and A(-v )  (equation (6)), this implies that the A ( v )  do not exist 
and by equations (3) and ( 5 )  we conclude the non-existence of ao+ and ao-. The 
homogeneous slab albedo problem, therefore, does not have a solution, which means 
that the problem with an incident neutron source has a unique solution for all b and 
c < 1. It is to be noted that a restriction on the values of b and c as given by McCormick 
and Mendelson (1964) does not arise here, and the solution exists for all b and c < 1. 
The restriction is necessary if the Neumann series is to converge, not for a solution to 
exist. We therefore conclude the existence of a unique solution for the slab albedo 
problem for all slab thicknesses and incident flux of neutrons. 

6. Conclusions 

The exact critical problem for a slab has been formulated as an (approximate) inverse 
eigenvalue problem. Though the inverse eigenvalue problem has been studied pre- 
viously in neutron transport theory in a different context (Larsen and Zweifel 1974, 
Ukai 1965, Vidav 1968) it does not appear to have been systematised on the basis of 
perturbation theory of operators. It has been shown in this paper that perturbation 
theory leads in a natural way to the study of inverse eigenvalue problems. Monotonicity 
of the eigenvalue parameter is sufficient to guarantee the existence of a discrete solution 
to the inverse problem. Previous authors (Larsen and Zweifell974, Vidav 1968) have 
deduced the existence of a discrete solution by specifically demonstrating that the 
eigenvalue function tends either to zero or an infinite limit at one point in the domain of 
definition of the inverse parameter. This implies that the eigenvalue function cannot be 
a constant, which in turn leads by the Gohberg-Atkinson theorem to the existence of a 
discrete solution. Unlike the time eigenvalue problem, there cannot be more than one 
critical eigenvalue in the region given by equation (15a). Uniqueness of the eigenvalue 
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function was established through the Hopf criterion. The entire formulation depends 
on the integral operator being positive with positive eigenvalues. This implies that the 
functions B ( v )  are also positive. While it is impossible to show this explicitly, the theory 
given above produces results that are acceptably accurate. Therefore the implications 
inherent in the theory must be valid, which means that the eigenfunctions B ( v )  of the 
critical problem must actually be positive. It must also be remembered that we have not 
analysed the exact problem, but only an approximate one. However, the approximate 
problem differs insignificantly from the real one and it can be concluded that the 
hypotheses for the ideal problem hold for the real one also. Numerical values of the 
critical thickness, obtained here by functional analytic methods in contrast to the 
classical explicit solution of the operator equation (Mitsis 1963, McCormick and 
Mendelson 1964), give significantly accurate results in a rather simple and straightfor- 
ward way. Thus, where the determination of the inverse eigenvalue parameter is 
concerned-and this, as we know, is often of fundamental importance in transport 
theory-our  approach has the virtue of simplicity both in formulation and in appli- 
cation. 
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